Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs

نویسندگان

  • Kai Keng Ang
  • Zhengyang Chin
  • Haihong Zhang
  • Cuntai Guan
چکیده

The common spatial pattern (CSP) algorithm is effective in decoding the spatial patterns of the corresponding neuronal activities from electroencephalogram (EEG) signal patterns in brain–computer interfaces (BCIs). However, its effectiveness depends on the subject-specific time segment relative to the visual cue and on the temporal frequency band that is often selected manually or heuristically. This paper presents a novel statistical method to automatically select the optimal subject-specific time segment and temporal frequency band based on the mutual information between the spatial–temporal patterns from the EEG signals and the corresponding neuronal activities. The proposed method comprises four progressive stages: multi-time segment and temporal frequency band-pass filtering, CSP spatial filtering, mutual information-based feature selection and naı̈ve Bayesian classification. The proposed mutual information-based selection of optimal spatial–temporal patterns and its one-versusrest multi-class extension were evaluated on single-trial EEG from the BCI Competition IV Datasets IIb and IIa respectively. The results showed that the proposed method yielded relatively better sessionto-session classification results compared against the best submission. & 2011 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

Equivalent-Current-Dipole-Source-Localization-Based BCIs with Motor Imagery

This chapter will propose a new paradigm for single-trial-electroencephalogram (EEG)-based Brain-Computer Interfaces (BCIs) with motor imagery (MI) [1] tasks. Among such BCIs, the sensorimotor rhythm (SMR)-based ones, when using common spatial patterns (CSPs), require features over broad frequency bands, such as mu, beta and gamma rhythms [2]. Therefore, very high-dimensional feature vectors an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2012